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This paper is devoted to the study of the group±subgroup relations U <G
between space groups. A procedure has been developed for the derivation of all

subgroups U j <G which are obtained from U by a transformation with a

translation (T -equivalent subgroups). All T -equivalent supergroups Gk >U can

be determined in the same way from one supergroup G>U. The decisive group

in this procedure is the translation part of the (Euclidean) normalizer of

Hermann's group M. The group M is the uniquely determined group

U �M � G with the translations of G and the point group of U. The method

is particularly useful in the search for supergroups of space groups and is based

on several lemmata which are formulated and proven in this paper. The results

suggest under special conditions the possibility of a transition with `region'

formation in some analogy to the well known domain formation. This transition

could occur from high symmetry to low symmetry or from low symmetry to high

symmetry or even both ways.

1. Introduction

1.1. List of symbols

1.2. Aim of the paper

Group±subgroup relations between space groups are a

subject of general interest in crystallography. Moreover, they

are essential when elucidating the common aspects of

different crystal structures in crystal chemistry, when consid-

ering continuous phase transitions, when comparing spectra of

similar substances etc.

The investigation of group±subgroup relations between

space groups G and U , G>U ,1 was started by Hermann (1929).

In his theorem, see lemma 1, he proved that for each pair

G>U there exists an intermediate group M, G �M � U ,

later called the group of Hermann, which plays a special role in

such relations. Its importance has been emphasized by Billiet

(1981a,b). In particular, Billiet pointed out that the subgroups

Ur <G, which can be transformed one into the other by

translations (called T -equivalent subgroups), are listed

incompletely in the available tables of subgroups U. Such

subgroups play a major role in this paper.

Koch (1984) analysed in detail the in¯uence of the Eucli-

dean and af®ne normalizers of G and U on the subgroups U i of

a space group G. She obtained important results and conjec-

tures on the relations between space groups from a general

point of view and from the consideration of many examples.

The supergroups G of a space group U were treated less

completely but interesting laws and rules were also reported

for them.

In this paper, the points of view of Billiet (1981a,b) and

Koch (1984) are combined by extending their considerations

to the Euclidean normalizer NE�M� of Hermann's groupM.

It turns out that the translation part T �N E�M�� of NE�M�
determines the T -equivalent subgroups U i of a given space

group G as well as the T -equivalent supergroups Gk of a given

space group U. The consequent application of M and

T �N �M�� gives a deeper insight into the symmetry relations

between space groups. It also makes such relations compre-

hensible and more transparent and gives an overview of the

T -equivalent sub- and supergroups in a group±subgroup

relation.

a, b, c, t Vectors

X , I Matrices

x, t, l Columns

�X; x�, �I; t� Matrix±column pairs

G, U , P,M, N ; . . . Groups

A, E, O, T Particular groups

h, t, x Group elements

² On leave of absence from Department of Condensed Matter Physics,
University of So®a, 1126 So®a, Bulgaria.
1 In this paper, the symbols< and> are used for proper sub- and supergroups;
the symbols � and � include G � U.
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Such an investigation does not seem to have been made

before. In fact, Koch (1984) has mentioned NE�M� in a

particular example but our aim is to explore the general

properties of that group and its in¯uence on the group±

subgroup relations between space groups.

1.3. Nomenclature and definitions

In this paper the following notions are used:

Special groups referred to in this paper are the af®ne group

A of all non-singular af®ne mappings, the Euclidean group

E<A of all isometries (motions) and the translation group

T < E of all translations in Euclidean space; in vector space,

the group O of all orthogonal mappings.

The elements of a space group X are its symmetry opera-

tions which are isometries leaving an existing or a possible

crystal structure ®xed, see International Tables for Crystal-

lography (1983), Vol. A (abbreviated as ITA), Part 8. Every

isometry consists of two parts, called the linear part and the

translation part. Referred to a coordinate system, the linear

part of a symmetry operation of X is described by a matrix X ,

the translation part by a column x. Such a description is used

in equations (2) and (3).

A subgroup U <G is called a maximal subgroup of G if there

does not exist a group X for which U <X <G holds. On the

other hand, under the same condition, a supergroup G>U of

U is called a minimal supergroup of U.

In a group±subgroup or group±supergroup relation

between the space groups G and U , there may be many ways

G>X >Y> . . . >U from G to U. Any such way is called a

group±subgroup (group±supergroup) chain or, for short,

chain. Only chains of ®nite index i � jG : Uj of U in G are

considered.

Each space group X has the normal subgroup T �X�< T of

all its translations. The coset decomposition X : T �X� of a

space group X relative to T �X� is essential for the discussion

of group±subgroup relations between space groups. Because

T �X� is a normal subgroup of X, the cosets of this decom-

position form a group, called the factor group X=T �X�. The

elements of the same coset have the same linear part and the

elements of different cosets have different linear parts such

that each coset can be characterized by `its' linear part. These

linear parts form themselves a ®nite group which is called the

point group PX <O of the space group X in crystallography

and which is isomorphic to the factor group X=T �X�. Its order

is the number jX : T �X�j of cosets. Whereas X describes the

structural symmetry of the crystal, PX describes the symmetry

of the macroscopic crystal, i.e. the symmetry of its ideal shape

and of its macroscopic physical properties.

In a relation U <G (space group G±subgroup U) or G>U
(space group U±supergroup G), the corresponding translation

groups are T �U� � T �G�< T .

A general subgroup U <G has less translations than G,

T �U�< T �G�, as well as less cosets in the decomposition

U : T �U� than in G : T �G�, i.e. less linear parts in U than in G.

In crystallographic terms, PU <PG. However, there are two

important special cases:

A subgroup U <G of a space group G is called translation-

engleich2 or a t-subgroup if T �G� � T �U�. Then there are more

cosets in G : T �G� than in U : T �U�, i.e. more linear parts in G
than in U . In crystallographic terms, PU <PG is a proper

subgroup of PG.
A subgroup U <G is called klassengleich2 or a k-subgroup

if each coset of G : T �G� is also represented in U : T �U�, i.e.

G and U have the same linear parts, or PG � PU . Then

T �U�< T �G� is a proper subgroup of T �G�.
The analogous nomenclature general supergroup, t-super-

group and k-supergroup is used for supergroups; the corre-

sponding chains are general chains, t-chains and k-chains.

For the considerations in the next sections, the concept of

the normalizerNH�F� of a group F in a groupH is needed in

addition.

De®nition 1. Let F <H be a subgroup of H. The set of

all elements h 2 H that map the group F onto itself by

conjugation, hÿ1F h � F , forms a group NH�F�,
F � NH�F� � H, which is called the normalizer of F in H.

In particular, the normalizer of a group F in the group E of

all isometries is called the Euclidean normalizer NE�F�, that

in the group A of all af®ne mappings is the af®ne normalizer

NA�F�.
Let F <H be a subgroup of H and h 2 H. Then,

F0 � hÿ1Fh<H is a subgroup of H, which is isomorphic to

F . The groups F andF0 are said to be conjugate underH orH
conjugate. Frequently, the group F will be transformed by an

element x 2 X , where F is not a subgroup of X. Then also the

group xÿ1Fx � F0 is not a subgroup of X but the groups F
and F0 are isomorphic and are called equivalent under X or

X -equivalent. In particular, groups are called T -equivalent if

they are equivalent under a translation t 2 T .

The Hermann±Mauguin symbols for the space groups are

modi®ed in this paper in comparison with their conventional

form in ITA. In order to indicate the lattice relations of

correlated space groups in a group±subgroup chain, the

conventional Hermann±Mauguin symbols have been

extended. The coef®cients of the basis vectors are put into

parentheses (. . .) and are inserted between the lattice part P,

F, I etc. and the rotational part of the Hermann±Mauguin

symbol. The following convention is used: the basis vectors of

one of the correlated space groups are chosen as the basis to

which the lattices of the other space groups are referred. For

example, P�111�m�3m in Fig. 2 means that the basis vectors of

the lattice of this space group are 1a, 1b and 1c. The expression

C�11 1
2�4=mmm then means that the basis of this space group is

a0 � a, b0 � b and c0 � 1
2 c with additional translations t�12 1

2 0),

t�00 1
2) and t�12 1

2
1
2) relative to P�111�m�3m; F�222�4=mmc means

a0 � 2a, b0 � 2b and c0 � 2c with centring translations t�110�,
t�101� and t�011�. Note that the last two symbols are uncon-

ventional; their conventional symbols are P�1010 1
2�4=mmm and

2 There do not seem to exist adequate English expressions for the German
terms translationengleich and klassengleich. They were introduced by
Hermann (1929) with zellengleich instead of translationengleich. However,
the term zellengleich was ambiguous because it could refer to the conventional
unit cells and not to the groups T �G� and T �U�.



I�20202�4=mcm with 1010 meaning a0 � 1
2 �aÿ b�, b0 � 1

2 �a� b�
and 2020 meaning a0 � aÿ b, b0 � a� b. In addition, the

lattice constants of the tetragonal groups may deviate from the

cubic ones within the usual limits because c0 � a0 is no longer

strictly necessary in practice for the tetragonal symmetry.

2. Laws for sub- and supergroups

In this section, the laws will be derived and discussed which

relate to the groupM in a space-group relation G>U and to

the translation part T �N E�M�� of its Euclidean normalizer.

In any case, T �N E�M�� � T �NA�M�� holds because any

translation is an isometry. The laws valid for subgroups and

supergroups are dealt with in x2.1. Lemmata for subgroups

and for supergroups are treated separately in the next sections.

These lemmata are similar but their proofs differ in one

important step.

2.1. General laws

The theorem of Hermann and its group M are important

tools for the investigation of relations between space groups

(Billiet, 1981a,b). They are central in this paper.

Lemma 1. Theorem of Hermann. For each pair of space

groups U <G, a uniquely de®ned space groupM exists such

that

U �M � G holds, where �1�
(i)M is a t-subgroup of G, i.e. T �M� � T �G�, andM has

the same or less linear parts than G, PM � PG;
(ii) U is a k-subgroup of M, i.e. G and M have the same

linear parts, PU � PM and T �U� � T �M�.
For the proof, see Hermann (1929).

Remark. Lemma 1 has been formulated using subgroups.

When looking for supergroups, the formulation: `. . ., where G
is a t-supergroup ofM, andM is a k-supergroup of U' is more

appropriate.

Corollary. For a maximal subgroup U <G, either U �M
holds and U is a t-subgroup of G or G �M holds and U is a

k-subgroup of G. Therefore, a maximal subgroup U <G is

either a t-subgroup or a k-subgroup of G.
For a minimal supergroup G>U, eitherM� U holds and G

is a t-supergroup of U orM� G holds and G is a k-supergroup

of U. Therefore, a minimal supergroup G>U is either a

t-supergroup or a k-supergroup of U.

From the characterization of the groupM in the theorem of

Hermann, lemma 2 follows:

Lemma 2. The groupM of Hermann's theorem in the chain

U �M � G is completely determined already by the group U
and the translations of G as well as by the group G and the

point group PU.

Indeed, in the ®rst case, the groupM is the group generated

by the group U and the translation group T �G�, i.e. it is the

smallest group that contains the elements of U and of T �G�. In

the second case, one takes from the cosets of the decom-

position G : T �G� all those whose linear parts occur in the

elements of U, i.e. which belong to the point group PU.

Each subgroup U of a ®xed group G determines `its' group

M. To a set of conjugate subgroups U there may belong

different groupsM. For example, if U is a tetragonal subgroup

of a cubic space group G, then there are three conjugate

groups U with the tetragonal axes along �100�, �010� and �001�.
Thus, there are three conjugate groupsM� G, each with the

tetragonal axis of `its' group U.

De®nition 2. The groupM is called the group of Hermann.

For a given space group X , the normalizers NE�X� and

NA�X� may have more translations than the group X has.

Again, T �N E�X�� � T �NA�X�� holds because any translation

is an isometry. Using the matrix-column description of the

isometries, the additional translations t of these normalizers

N�X� of X can be calculated from the equation

�I; t�ÿ1f�X i; xi � lj�g�I; t� � f�Xp; xp � lq�g; �2�
where �I; t� is the matrix±column pair of a translation of

T �N �X��, f�X i; xi�g and f�Xp; xp�g are sets of matrix±column

pairs representing the space group X , listed e.g. as the general

position of X, and lj and lq are the columns of coef®cients of

translations of X. The indices i and p are running over all

representatives and the indices j and q are running over all

translations of T �X�.
From equation (2) follow the equations

�X i ÿ I� tN 2 T�X�; �3�
where X i are the matrices of a set of generators of PX , I is the

unit matrix, tN is the column of a translation of T �N �X�� and

T�X� is the set of columns of all translations of X, see e.g.

Boisen et al. (1990).

Let U <G. When calculating T �N �U�� using equations (3),

attention has to be paid to the following fact. Suppose the

subgroup U has more free lattice parameters than the space

group G has, i.e. G and U do not belong to the same crystal

family. Then the lattice parameters of U cannot be general but

have to obey special relations. For example, if G is cubic and U
is tetragonal as in example 3.2.1, the relation c=a of the lattice

parameters of U is not arbitrary as it is normally for a

tetragonal space group but is ®xed, e.g. 1. Thus, the actual

symmetry of the translation lattice of U may be cubic with a

threefold rotation as an additional generator. This generator is

not imposed by the tetragonal symmetry of U. Generators

of such additional (from the view point of U accidental)

symmetries do not enter equations (3). The generators in (3)

refer to the point group PX of the space group X , not to the

point group of its lattice.

Euclidean normalizers of space groups with `accidental'

lattice symmetries are listed by Koch & MuÈ ller (1990) and in

the forthcoming edition of International Tables for Crystal-

lography (2001), Part 15.

It is obvious from (3) that T �N �X�� cannot decrease with

increasing T �X� because more elements in T �X� provide

more possibilities for translations tN to ful®l equations (3). On
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the other hand, T �N �X�� cannot increase with an increase in

the number of independent generators of PX because each

equation of the system of equations (3) restricts the transla-

tions of T �N �X��, and to have more independent generators

means to have more restrictive relations to be ful®lled for the

translations t 2 T �N �X��.
Consider the chain G �M � U . According to lemma 1,M

is a t-subgroup of G. Therefore, T �M� � T �G� and PM � PG
and thus T �N �M�� � T �N �G��. On the other hand, U is a

k-subgroup of M. Therefore, PM � PU and T �U� � T �M�
and thus T �N �M�� � T �N �U��. From these formulae, one

obtains the following lemma:

Lemma 3. For the chain of space groups G �M � U, where

M is the group of Hermann in lemma 1, the inequality

T �N �U�� � T �N �M�� � T �N �G�� holds.

From lemma 3, the lemmata 4 and 5 follow immediately by

specialization.

Lemma 4. If U is a t-subgroup of G (or G a t-supergroup of U),

then U �M and T �N �U�� � T �N �G��.
Do there exist t-subgroups U of G for which N�G�>N�U�

holds? Koch (1984) states: `Group±subgroup relations of type

(2) [i.e.N�G�>N�U�] seem to be con®ned to class-equivalent

subgroups [i.e. k-subgroups], if only maximal subgroups

are considered'. It is clear that because of lemma 4 such

relations will be scarce; they require T �N �U�� � T �N �G��
and PN�G�>PN�U�. However, the example F�111�m�3m±

F�111�4=mmm � I�10101�4=mmm of index 3 with the same

lattice parameters for Fm�3m and F4=mmm shows that such a

relation is possible. The normalizers are P�12 1
2

1
2�m�3m with

a0 � 1
2 a and P�12 1

2
1
2�4=mmm with a0 � c0 � 1

2 a, so that

T �N �U�� � T �N �G�� is ful®lled, and PN�G�>PN�U� of index

jN �G� : N�U�j � 3. Another example is the similar pair

Pm�3m±R�3m of index 4.

Lemma 5. If U is a k-subgroup of G (or G a k-supergroup of U),

then G �M and T �N �U�� � T �N �G��.
This lemma has been formulated and proved in another way

by Koch (1984).

Lemma 3 can be extended to any intermediate group X of

any group±subgroup or group±supergroup chain between U
and G, independent of the number of intermediate members of

the chain and ofM being a member of the selected chain or

not. This is expressed by the following lemma:

Lemma 6. Let U � . . . � X � . . . � G be an arbitrary chain

between G and U , and X be an arbitrary intermediate group

including X � U or X � G. Then T �N �M�� � T �N �X��
holds.

The proof follows from equations (3) and the relations

T �X� � T �G� � T �M� and PX � PU � PM.

Remark. Because of T �N �X�� � T �X�, one can decompose

T �N �X�� into cosets relative to T �X�. The representatives of

these cosets are known in X-ray crystallography as the

permissible origins (Giacovazzo, 1992). According to lemma 6,

the group M is the group with the highest number of

permissible origins among all the groups of any chain between

G and U .

Remark. Both the groups T �N �G�� and T �N �U�� are

subgroups of T �N �M�� but they need not be in a group±

subgroup relation themselves. The possible relations between

T �N �G�� and T �N �U�� are discussed in x3.1.

All these relations as well as those for subgroups and

supergroups in the next two sections are valid independently

of the dimension of the Euclidean space.

2.2. A law for subgroups

Additional conclusions from lemma 3 refer to those

subgroups U i <Gwhich are T -equivalent to a subgroup U <G.

Their number is stated for many examples in Billiet (1981a,b)

and Koch (1984) without an indication of how it is obtained. It

results directly from the following lemma.

Lemma 7. Subgroup theorem. The number of subgroups

U i <G which are T -equivalent to a subgroup U <G is equal to

the index jT �N �M�� : T �N �U��j of T �N �U�� in T �N �M��.

Proof. The proof is performed by coset decomposition of

T �N �M�� relative to T �N �U�� and the choice of appropriate

representatives of the cosets. The representatives themselves

are then the translations by which the subgroups U i are

T -equivalent to the subgroup U <G; the number of repre-

sentatives is the number of the T -equivalent subgroups U i.

Each of these T -equivalent groups U i is a subgroup of G.
Although G may be shifted to another group G0 when shifting

U to U0 by a translation t 2 T �N �M��, M will be mapped

onto itself. Thus, U0 � M � G holds.

There are no T -equivalent subgroups U i <G other than

those of lemma 7. This second part of lemma 7 will be proven

using lemma 2. Suppose a subgroup U0<G exists which is

obtained from the subgroup U <G by a translation

t0 =2T �N �M��, where U0 � t0ÿ1Ut0, M0 � t0ÿ1Mt0 and

G0 � t0ÿ1Gt0. The group PU is invariant under the transfor-

mation with a translation. According to lemma 2, Hermann's

group of the pair U0<G is the groupM, notM0. Therefore, in

addition to U0 � M0, also U0 � M would be ful®lled. Then, U0
would also be a subgroup of the intersection V of the groups

M andM0. However,M 6�M0, otherwise t0 2 T �N �M��. As

cosets are either equal or have no element in common, there

must be cosets of M which are not cosets of M0 and thus

PV <PM � PU0 . This contradicts the assumption that U0 � V.

But if U0 6� V, then because of U0 � M0 also U0 6� M and thus

U0 6� G. &

T -equivalent subgroups U i <G may also be T �N �G��-
equivalent. If T �N �G�� � T �N �U��, the number u of these

groups may be calculated by the formula

u � jT �N �G�� : T �N �U��j directly. Otherwise one has to

decompose T �N �G�� relative to T �D�, where D is the inter-

section N�G� \ N �U� of the groups N�G� and N�U�, see

Koch (1984). The representatives of this decomposition yield

the T �N �G��-equivalent subgroups U i, their number is given



by u � jT �N �G�� : T �D�j. The classi®cation of the group±

subgroup pairs according to the relations between T �N �G��
and T �N �U�� is considered in x3.1.

In Koch's (1984) paper, the N�G�-equivalent subgroups U
play a distinguished role. However, general criteria on the

implication of such a relationship for crystal structures do not

seem to be known. Only the G conjugacy is primarily relevant

for the crystal structures with subgroups U <G, as has been

emphasized by Billiet (1981a). Other relations, e.g. conjugacy

or equivalence under normalizers, are relevant for the

symmetries but not directly for the crystal structures. This has

been demonstrated at derived structures of the perovskite

type by Billiet (1981a). One probably has to analyse and

compare the pertinent crystal structures in order to judge the

consequences of N�G� or T �N �G�� conjugacy and similar

relations on structural relationships, see example 3.2.3.

2.3. A law for supergroups

It is trivial that in a phase transition both directions may

occur, viz to lower and to higher symmetry. Nevertheless, the

supergroups Gk of a space group U are treated much less

frequently in the literature than the subgroups U i of a space

group G. The main reason is probably the lack of a phenom-

enon for supergroups of a group U which compares with the

conjugacy of subgroups of a group G with its formation of twin

and antiphase domains. Another reason may be the restriction

of the search for subgroups to the elements of the supergroup

G only. The search for supergroups has to take into consid-

eration the Euclidean group E of all isometries which is a

continuous group. Therefore, searching for supergroups is

more involved than searching for subgroups and cannot be

performed simply by an inversion of the subgroup data. In

addition, for every proper subgroup U the inequality

U <G � N �G� holds, whereas the relation G � N �U� holds

only if U is a normal subgroup of G, U / G.

The search for supergroups should be a necessary com-

panion of the search for subgroups as soon as relationships are

considered which are less direct than G conjugacy. If one does

not take into consideration T -equivalent supergroups when

dealing with T -equivalent subgroups, distorted views are

possible. When looking only for the subgroups of a space

group G, one may ®nd differences in T -equivalent subgroups

U r, which can be misleading. It is then necessary to ask also for

the T -equivalent supergroups Gs of these subgroups. Only the

simultaneous treatment of subgroups and supergroups

displays the real relations for such sets of supergroup±

subgroup chains. This is shown by the example 3.2.1 which

deals with the chains between P�111�m�3m and

F�222�4=mmc � I�20202�4=mcm.

Additional conclusions from lemma 3 refer to supergroups

Gk >U which are T -equivalent to a supergroup G>U. Their

number results directly from the following lemma.

Lemma 8. Supergroup theorem. The number of supergroups

Gk >U which are T -equivalent to a supergroup G>U is equal

to the index jT �N �M�� : T �N �G��j of T �N �G�� in T �N �M��.

Proof. The proof is performed by coset decomposition of

T �N �M�� relative to T �N �G�� and the choice of appropriate

representatives of the cosets. The representatives themselves

are the translations by which the supergroups Gk are

T -equivalent; their number is the number of T -equivalent

supergroups Gk. All groups obtained in this way are really

supergroups of U. Although U may be shifted to another

group U0 when shifting G to G0 by a translation t 2 T �N �M��,
M will be mapped onto itself. Thus, G0 � M � U holds.

There are no T -equivalent supergroups G0>U other than

those of lemma 8. Suppose a supergroup G0>U exists which

is obtained from the supergroup G>U by a translation

t0 =2T �N �M��, where G0 � t0ÿ1Gt0, M0 � t0ÿ1Mt0 and

U0 � t0ÿ1Ut0. The group T �G� is invariant under the trans-

formation with a translation. According to lemma 2,

Hermann's group of the chain U <G0 is the groupM, i.e. the

group U with its cosets expanded by the translations of G0, it is

not the groupM0. Thus, in addition to G0 � M0 also G0 � M
would be ful®lled. Then also G0 � W would hold, whereW is

the group generated from the groups M and M0, i.e. the

smallest group which contains all elements of M and M0.
However, because M and M0 are different, W must have

cosets of the coset decompositionW : T �W� which have more

elements than the corresponding cosets ofM have. Therefore,

G0 � W cannot be true. From this follows that also G0 � M
and G0 � U cannot be ful®lled. &

T -equivalent supergroups of U may also be T �N �U��-
equivalent. If T �N �U�� � T �N �G�� holds, their number g can

be calculated by the formula g � jT �N �U�� : T �N �G��j
directly. Otherwise, if T �N �U�� and T �N �G�� are not in a

group±supergroup relation, one has to decompose T �N �U��
relative to T �D�, where D is the intersection N�G� \ N �U� of

the groups N�G� and N�U�, see Koch (1984). The repre-

sentatives of this decomposition yield the T �N �U��-equiva-

lent supergroups G. Their number is given by

g � jT �N �U�� : T �D�j. The classi®cation of the group±

supergroup pairs according to the relations between T �N �U��
and T �N �G�� will be considered in the next section.

Also for the T �N �U��-equivalent supergroups general

criteria on the implication of such a relationship for crystal

structures do not seem to be known, cf. the last paragraph of

x2.2.

3. Applications

3.1. Peculiarities of TT -equivalent sub- and supergroups

Koch (1984) has distributed the group G±subgroup U and

group U±supergroup G chains into four cases with respect to

the relations between the normalizers N�G� and N�U�:
1. N�G� � N �U�
2. N�G�>N�U�
3. N�G�<N�U�
4. N�G� 6� N �U� and N�G� 6� N �U�.

These four cases are elucidated by many examples, mostly

taken from t- and k-chains, in particular from those with

maximal subgroups and minimal supergroups. Here the
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considerations are restricted primarily to the relations

between T �N �G�� and T �N �U�� because with respect to

T -equivalence there are clear rules for these translation

subgroups of the normalizers. They are part of the N�G�±
N�U� relations which, however, may belong to other types, see

the following examples. In analogy to Koch (1984), four cases

will be distinguished, their relations are listed with examples:

(1) T �N �G�� � T �N �U��. The t-chain P�111�m�3m±

P�111�23, the k-chain I�111�23±P�111�23, both with the

normalizer I�111�m�3m; many other t- and k-chains; the general

chains of the example 3.2.3.

The corresponding normalizers N�G� and N�U� may be

equal too, as in the speci®ed examples but also all other cases

may occur:

(a) N�G�>N�U�: I�111�a�3±P�111�a�3 with the normalizers

I�111�a�3d and I�111�a�3;

(b)N�G�<N�U�: P�111�a�3±P�111�213 with the normalizers

I�111�a�3 and I�111�a�3d;

(c) N�G� 6� N �U� and N�G� 6� N �U�: see example 3.2.2.

(2) T �N �G��> T �N �U��. The k-pair F�111�23±P�111�23

with the normalizers I�12 1
2

1
2�m�3m and I�111�m�3m; many other

k-chains; the general chains of the example 3.2.1.

For the corresponding normalizers, N�G�>N �U� may

hold, as in the ®rst example, otherwise N�G� 6� N �U� and

N�G� 6� N �U�, as in the G±U pair (referred to a hexagonal

basis) R�111��3±P�111��3 with the normalizers N�G� �
Rrev�11 1

2��3m and N�U� � P�11 1
2�6=mmm.

(3) T �N �G��< T �N �U��. The t-chain P�111�m�3±P�111�1
with the normalizers I�111�m�3m and P�12 1

2
1
2�m�3m; many other

t-chains; the general chain I�111�23±P�111�222 with the

normalizers I�111�m�3m and P�12 1
2

1
2�m�3m.

For the corresponding normalizers, N�G�<N �U� may

hold, as in the speci®ed examples, otherwise N�G� 6� N �U�
and N�G� 6� N �U�, as in the pair P�111�432±P�111�422,

tetragonal axis along z, with N�G� � I�111�m�3m,

N�U� � C�11 1
2�4=mmm.

Figure 1
This example has been treated by Billiet (1981a) and Koch (1984). The
lower part of the diagram to the left of the dotted line is contained in Fig.
2 of Billiet (1981a). On the way from G0 to the subgroups U r, the groups
X 0, X 1 andM are passed. The upper right part has been added in order
to show the positions of the group G1, both groups N�G0), N �G1), the
group Y � N �G0� \ N �M� � N �G0� \ N �G1� � N �M� \ N �G1�, the
groups X 2 and X 3 and the group N�M�. The full view upwards
from the subgroups Ur results from the complete diagram. All normal-
izers are the Euclidean normalizers; the lattices of the tetragonal groups
have cubic symmetry.
The basic space group is G0 � P�111�m�3m with a � b � c and the
conventional origin in the point h000i. The group G1 is T -equivalent
to G0 with the conventional origin in h00 1

2i. The normalizers
N�Gs� are N�G0� � I�111�m�3m h000i and N�G1� � I�111�m�3m h00 1

2i.
The T -equivalent groups Ur with the tetragonal axis along
z are U0 � F�222�4=mmc h12 1

2 0i; U1 � F�222�4=mmc h00 1
2i;U2 � F�222�4=mmc h12 1

2
1
2i; U3 � F�222�4=mmc h000i. Hermann's group

M, which is accidentally equal to the normalizers N�U r�, its normalizer
N�M� and the group Y are M� N�Ur� � P�111�4=mmm;
N�M� � C�11 1

2�4=mmm; Y � I�111�4=mmm, all with the origin in h000i.
The groups Xq are members of other chains between Ur and Gs (the
shift coef®cients h. . .i of the groups X r are different from those of the
groups Ur because the standard origins in ITA are different),
X 0 � F�222�m�3c h000i; X 1 � F�222�m�3c h12 1

2
1
2i; X 2 � F�222�m�3c h00 1

2i;X 3 � F�222�m�3c h12 1
2 0i.

From the diagram, one takes that each group Gs has as subgroupsM, two
groups of type X and the four groups U r. Each group Ur has the
supergroupsM, X r and the two groups Gs. If only the group G0 is taken
into consideration, the four subgroups Ur <G0 split into two kinds of two
subgroups each. The subgroups U0 and U1 have `its' supergroup Xq each,
q � 0; 1; the subgroups U2 and U3 have none. However, the complete
diagram is nicely symmetric; the simultaneous view to sub- and
supergroups and the in¯uence of the group N�M� unveil the real
relationship between the involved T -equivalent groups.
This ®gure displays the subgroups U with the tetragonal axis along one of
the coordinate directions, say the z axis. The same diagram holds for the
conjugate subgroups with their tetragonal axis along the x or the y axis.
Altogether, there are 12 subgroups of type U, forming four conjugate
classes with three subgroups each (Billiet, 1981a).

Figure 2
The group±subgroup chain G0±U0 of Fig. 1 as seen from another
point of view. Displayed is the chain G0±M±U0 with the normalizers
of these groups. The number of four T -equivalent subgroups Ur of G0

and that of two T -equivalent supergroups Gs of Ur is not displayed
but can be determined conveniently also from this diagram
jT �N �M�� : T �N �U0��j � 4; jT �N �M�� : T �Y�j � 2, where
Y � N �G0� \ N �M� � I�111�4=mmm. The action of G0 on M triples
the number of subgroups, changing the tetragonal axis from z to x and y.
The conventional symbols of C�11 1

2�4=mmm and F�222�4=mmc are
P�1010 1

2�4=mmm with 1010 meaning a0 � 1
2 �aÿ b� and b0 � 1

2 �a� b� and
I�20202�4=mcm with 2020 meaning a0 � aÿ b and b0 � a� b. The symbols
k2 and t3 attached to the lines mean k- or t-subgroup of index 2 or 3.



(4) T �N �G�� 6� T �N �U�� and T �N �G�� 6� T �N �U��. The

general chains P�111�m�3m±P�112�4=mmm, tetragonal axis

along z, with the normalizers I�111�m�3m and C�111�4=mmm;

other general chains.

If the translation parts of the normalizers are not in a

group±subgroup relation, then also the normalizers N�G� and

N�U� themselves are not.

Special relations hold for t-chains and k-chains. They are

described in the next two paragraphs.

If the chain G0±U0 is a t-chain, then U0 �M. According

to lemma 4, T �N �M�� � T �N �U0�� � T �N �G0��. There are

no other subgroups of G0 which are T -equivalent to U0.

If T �N �U0�� � T �N �G0�� then there are also no other

supergroups of U0 which are T -equivalent to G0. If

T �N �U0��>T �N �G0��, then T �N �U0�� is decomposed relative

to T �N �G0�� into jT �N �U0�� : T �N �G0��j � g cosets, whose

representatives generate g different T -equivalent t-super-

groups Gs from G0.

If the chain G0±U0 is a k-chain, then G0 �M. According to

lemma 5, T �N �M�� � T �N �G0�� � T �N �U0��. There are no

other supergroups of U0 which are T -equivalent to G0. If

T �N �U0�� � T �N �G0��, then there are no other subgroups of

G0 which are T -equivalent to U0. If T �N �G0��> T �N �U0��,
then T �N �G0�� is decomposed into cosets relative to

T �N �U0�� with jT �N �G0�� : T �N �U0��j � u cosets, whose
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Figure 3
Starting from the supergroup G0 � P�111�23 with the conventional origin
in the point h000i and its general subgroup U0 � F�222�222 of index 6
with the same conventional origin, one ®nds for this chain the Euclidean
normalizers N�G0� � N �U0� � I�111�m�3m, called N 0 in the ®gure,
with the same conventional origin. Then M� P�111�222 and
N�M� � P�12 1

2
1
2�m�3m, also with the origin in h000i. The group N 0 is a

subgroup of N�M� of index 4, its normalizer in N �M� is N 0 itself.
Therefore, there are four T -equivalent subgroups of N�M�, of the type
I�111�m�3m, designatedN 0,N x,N y andN z in the diagram, because their
origins are in h000i, h12 00i, h0 1

2 0i and h00 1
2i, referred to the coordinate

system introduced above. Analogously, there are four T -equivalent
supergroups G0; . . . ;Gz and four T -equivalent subgroups U0; . . . ;Uz with
the corresponding origins in h000i; . . . ; h00 1

2i. The groups Hs of the type
I�111�23 are inserted in the chains; they have the corresponding origins
and separate the enhancement of the lattice from that of the point group
on the way from Gs toN�Gs�. The symbols k2, k4, t3 and t4 attached to the
lines mean k- or t-subgroup of index 2, 3 or 4. For the relations between
N�Gs� and N �U r�, see the end of x3.1.

Figure 4
Structural implications can be recognized in the example of the general
chains c�11�2mm±p�11�2,M� c �11�2. Here U0 is a subgroup of index 4
of G0 with the conventional unit cell of G0, i.e.  � 90�, conventional
origin in h00i. The normalizers are N�G0� � N �U�0 � p�12 1

2�2mm and
N�M� � c�12 1

2�2mm, both with origin in h00i. The T -equivalent groups
are U1 and G1 with their origins in h14 1

4i and the same normalizers as U0

and G0. The symbols k2 and t2 attached to the lines mean k- or t-subgroup
of index 2.
The group±subgroup relations are displayed. A phase transition from G0

may result in two T -equivalent subgroups U0 and U1; a phase transition
from U0 may result in two T -equivalent supergroups G0 and G1. This is
clear from the symmetry diagrams in Figs. 5(a) to (e) and the two-
dimensional structure models in Figs. 6(a) to (e). The two-dimensional
`crystal structures' of the two T -equivalent subgroups Ur as well as those
of the two T -equivalent supergroups Gs are different. Therefore,
simultaneous phase transitions are unlikely. If they could occur for
special compounds, a kind of shift-domain formation should be observed
which is called region formation in this paper. Shift domains are formed
by the same crystal structure differing only in the position. Unlike
domains, regions are formed by different crystal structures (modi®ca-
tions) with the same orientation but shifted symmetry frames. This effect
could either happen in the transition to the low-symmetry phase or in that
to the high-symmetry phase or even in both directions.
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representatives generate u different T -equivalent k-sub-

groups Ur of G0.

De®nition 3. Two chains G1±U1 and G2±U2 are called

T -equivalent if there exists a translation t 2 T such that

G2 � tÿ1G1t and U2 � tÿ1U1t.

From the last two paragraphs it follows that for t relations

G>U all chains are of the type Gs±U0 and are thus

T -equivalent. For k relations G>U, all chains are of the type

G0±U r and are also T -equivalent.

As can be seen from the examples under (1) to (4), general

chains may belong to any of the four types of the T �N �G��±
T �N �U�� relations. Moreover, different chains between

T -equivalent sets of general subgroups U r and general

supergroups Gs may belong to different types of N�G�±N�U�
relations. This phenomenon is demonstrated for

T �N �G�� � T �N �U�� in example 3.2.2. The four chains

between Gs � P�111�23 and Ur � F�222�222 with s � r belong

to Koch's (1984) case 1, N�G� � N �U�. The other 12 chains

with s 6� r belong to case 4,N�G� 6� N �U� andN�G� 6� N �U�.
For example,N�G0� � N �U0� � I�111�m�3m with the origin

in h000i. Therefore, the chain G0±U0 belongs to case 1 of

Koch (1984). On the other hand, N�Ux� � I�111�m�3m

with the origin in h12 00i. Therefore, the intersection

N�G0� \ N �Ux� � I�111�4x=mmm, i.e. the chain G0±Ux

belongs to case 4 of Koch (1984).

Such a diversity can only happen for general chains because

for them the different chains Gs±U r are not necessarily all

T -equivalent.

An analogous example for T �N �G��> T �N �U�� is formed

by the general relation P�111�m�3±F�222�mmm with the types

of normalizers N�G� � I�111�m�3m and N�U� � P�111�m�3m.

With M� P�111�mmm and N�M� �
P�12 1

2
1
2�m�3m, one ®nds similarly as in

example 3.2.2 four normalizersN�G�, eight

normalizers N�U�, four groups Gs and

eight groups U r. Altogether there are 32

chains Gs±U r. For eight of them

N�G�>N�U� holds; the other 24 belong

again to case 4, N�G� 6� N �U� and

N�G� 6� N �U�.

3.2. Examples

In this section, examples are displayed in

order to demonstrate the application and

the consequences of the derived formulae.

The Hermann±Mauguin space-group

symbols which are attached to the

diagrams of the group±subgroup trees are

slightly modi®ed, see x1.3.

In example 3.2.1, Figs. 1 and 2 show the

subgroups of the space group Pm�3m of

perovskite. They have been extensively

discussed by Billiet (1981a) and Koch

(1984) without the group T �N �M��. Here

this group is taken into consideration.

In example 3.2.2, Fig. 3 demonstrates

that general chains between sets of T -

equivalent subgroups Ur and supergroups

Gs may belong to different classes ofN�G�±
N�U� relations, see also x3.1.

In example 3.2.3, possible implications

on the underlying crystal structures are

demonstrated which may occur if their

space groups are equivalent under

T �N �M��, whereM is Hermann's group.

From Fig. 4, the group±subgroup relations

may be taken. The symmetry relations are

displayed in Figs. 5(a) to (e). The possi-

bility of a transition from high to low as

well as from low to high symmetry is

suggested from Figs. 6(a) to (e). Such a

Figure 5
(a) Supergroup G0; one unit cell of c�11�2mm; origin in h00i. (b) T -equivalent supergroup G1;
one unit cell of c�11�2mm; origin in h14 1

4i. (c) Hermann's group M; one unit cell of c�11�2;
unconventional setting; origin in h00i. (d) Subgroup U0; one unit cell of p�11�2; origin in h00i. (e)
T -equivalent subgroup U1; one unit cell of p�11�2; origin in h14 1

4i.



transition would include region formation which has some

similarity to the formation of antiphase domains in the usual

phase transitions from high to low symmetry.

4. Conclusions

There are different methods, computer programs, tables and

diagrams for the determination of the subgroups of a space

group G. Also when searching for the supergroups Gs >U of a

space group U it is usually easy to ®nd a representative, say G0,

of each type, e.g. by the inversion of available subgroup data.

The equivalence under N�U� yields other groups Gk from G0.

The main problem is then to determine all supergroups Gs >U
which are T -equivalent to one of the groups Gk. This problem

can be solved now easily using the lemmata of x2.3. The tools

are the normalizer N�M� of Hermann's group M and the

Acta Cryst. (2001). A57, 311±320 Wondratschek and Aroyo � Group±subgroup relations 319

research papers

Figure 6
(a) Structure with plane group G0; four unit cells; origin in h00i. (b) Structure with plane group G1; four unit cells; origin in h14 1

4i. (c) Structure with plane
groupM; four unit cells; origin in h00i. (d) Structure with plane group U0; four unit cells; origin in h00i. (e) Structure with plane group U1; four unit cells;
origin in h14 1

4i.
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coset decomposition of its translation group T �N �M�� rela-

tive to T �N �G��. The coset representatives are the translations

ts 2 T which transform the groups Gk into Gs by conjugation.

The lemma of x2.2 facilitates the search for subgroups. The

analogy of the lemmata in xx2.2 and 2.3 reduces the dif®culty

of the search for supergroups to the level of the search for

subgroups and thus makes supergroups of space groups much

more accessible.

It is shown in example 3.2.3 of x3.2 how structural changes

are possible in phase transitions from high to lower and from

low to higher symmetry, which include a process called region

formation in this paper. Region formation may resemble the

well known formation of shift domains in transitions from high

to lower symmetry.
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